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Abstract-A numerically stable interface between the Haar wavelet
based MRTD technique and FDTD is presented in this paper. Such a
hybridization of MRTD facilitates the application of the method to open
structures and inhomogeneous circuit geometries, where the use of high
order wavelets significantly complicates the formulation of a pure MRTD
scheme. Furthermore, it allows for the straightforward enforcement of lo-
calized boundary conditions, bypassing the necessity to employ image the-
ory, which typically arisesin MRTD. The fact that the implementation of

the proposed interface involves no spatial or temporal interpolation indi-

cates the effiency of the developed technique.
Keywords-Multiresolution Analysis, MRTD, FDTD.

I. INTRODUCTION

The time domain characterization of microwave structures,
often encountered in wireless front-end applications such as fil -
ter, resonator or feed components, usually includesthe modeling
of fine detail complex boundaries and regions of dynamically
varying field distributions [1]. Therefore, the incorporation of
mesh refinement techni ques, that offer the promise of alleviating
the computational burden, brought about by the stability restric-
tion that the necessarily fine cell size inposes on the time step,
is motivated.

Standard subgridding techniques involve spatio-temporal in-
terpolations or extrapolations at the boundaries of different res-
olution parts of the numerical grid [2], that render the rigor-
ous enforcement of the divergence free nature of the magnetic
field and the continuity conditions a rather subtle issue. Fur-
thermore, a higher order static subgridding algorithm for the
Finite Difference Time Domain (FDTD) technique, that needs
no interpolatory operations was recently proposed [3]. How-
ever, astime domain simulations of microwave geometriestypi-
cally register the history of awideband pulse propagation along
the computational domain, adaptively imposing dense gridding
conditions only in and around the pulse and the products of its
retro-reflections can further extend the efficiency of atechnique.
Thus, if alowing for arelatively coarse mesh is one challenge
that novel numerical schemes are expected to meet, a second,
but equally important one, is adaptivity, translating to the possi-
bility of dynamic mesh refinement at regions of the domain that
are electromagnetically active at a certain time step.

Wavel et based numerical algorithms stemming from the Mul-
tiresolution Time Domain technique [4] offer a natural frame-
work for the implementation of dynamic mesh refinement as
shown in [5]. For homogeneous domains, the computational ef-
ficiency of the former, is expected to increase with the order of
themultiresolution expansion at hand [6]. Yet, the complexity of
conductor, dielectric and boundary modeling that they present,
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Fig. 1. Equivaent grid points (e.g.p.) within ascaing cell as introduced by a
first order wavelet expansion in x, z directions.

also increasing with wavelet order, seriously compromisestheir
potential applicability to state of the art devices. The aforemen-
tioned contradiction is addressed in this paper by means of ahy-
brid approach that connects the FDTD technique with the Haar
wavel et based MRTD, viaanumerical interface. The purpose of
this approach is to establish an efficient algorithm, allowing for
the combination of the versatility of FDTD with the adaptivity
of MRTD, employing thefirst in geometrically complex parts of
the domain and the second in homogeneous regions.

Il. FORMULATION
A. MRTD, FDTD equations
A two dimensional system of the following Maxwell’s equa-
tions, corresponding to TE waves :
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with p = xzZ + zZ, is considered and discretized following
the Moment Method based technique of [4]. In the MRTD
region, the field components are expanded in a Haar wavelet
basis of orders r; e IN ©— and r; e, iN z— direction re-
spectively, the scaling cell sizes being denoted by Az, Az. As
explained in [7], if an electric field scaling cell is centered at
(iAz, kAz), the corresponding H, scaling cell must be cen-
tered at (iAz, (k + s,)Az), with s, = 1/27=mae=F2 while the
H, oneat ((i + s;)Aw, kAz), with s, = 1/27=me=+2_ Inthe
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FDTD region, the field components are expanded in a pul se ba-
sis, introducing the cell dimensions A ry = A{/27¢mas+1,
& = x, 2. For example, the H, expansion in the MRTD region
iscastintheform:
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where the standard definitions (given for example in [8]) have
been used for the Haar scaling and wavelet functions ¢, ¢ P
and the pulse functions i (which compose the temporal basis of
the method). Inthe FDTD region, H,(p, t) iswritten as:

H, (ﬁ, t) =

z,maz+1 z,mazt1
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where the definition of the r—order scaling function: ¢7.(£) =
2712 (27 (€] AE) —m) with ¢ = x, z has been adopted. The use
of Haar wavelets in the MRTD region, effectively divides each
scaling cell into 27=ma=+1 x 27=ma=t1 qubcells of size Az, ¢
by Az.s, inthe sense shownin Fig. 1, where the case of afirst
order (two wavelet levels) in both z, 2z directions scheme is de-
picted. An MRTD dispersion analysis[9] leads to the following
expression ;
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which coincides with the dispersion relationship of an FDTD
scheme with cell sizes Az.¢r, Azcsr, as the one considered
here (u,, denotes the phase velocity). Hence, under the electric
/ magnetic node arrangement that is used for the MRTD region,
a perfect matching of the stability and dispersion properties of
the methods applied in the two regions is attained, leading to
their reflectionless and stable connection with no need for any
interpolation or extrapolation in either space or time.

B. Connection Algorithm

Expanding on the concepts presented in [8], a two dimen-
sional connection algorithm is developed. Considering the case
wherean FDTD region enclosesan MRTD one, the data transfer
from MRTD to FDTD isinitially addressed. It is noted that for
the update of all FDTD grid points whose stencil extends into
the MRTD region, it sufficesto retrieve the nodal field values of
the electric field one FDTD cell within the MRTD region (Fig.
2), thus allowing for the complete determination of the tangen-
tial electromagnetic field componentsacrossthe boundary of the
FDTD domain. Then, by equivalence principle, theindependent
solution of this region becomes possible. Thus, the problem
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Fig. 2. FDTD update from MRTD data.
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boils down to calculating nodal field values across the boundary
of the MRTD region, which is exactly the inverse fast wavelet
transform (IFWT) function that is carried out at the optimal
complexity of O(N). Conversely, for the update of the MRTD
boundary magnetic field coefficients, FDTD electric field nodes
extending over one scaling cell within the FDTD region are
wavelet transformed, via a fast wavelet transform (FWT) rou-
tine. If this scaling cell extends beyond the domain, zero field
values are used. Thisis possible for both closed and open do-
main problems, since a PEC backed absorber is normally used
for the simulation of an open boundary. Fig. 3 schematically ex-
plains this procedure, for acase where ry ez = z,maz = 1. It
is noted that no FDTD grid points are sought at the (shaded) cor-
ner region shown in Fig. 3. Thisis dueto the fact that MRTD,
just as FDTD, uses a cross - shaped stencil for the update of
all grid points. Computing the electric field MRTD coefficients
from the FDTD data via an FWT and updating the tangential
magnetic field component coefficients via the standard MRTD
finite difference equations, determines again the tangential elec-
tromagnetic field components across the boundary of the MRTD
region, which is sufficient for its independent, MRTD based so-
[ution.

Evidently, all operations that implement this connection al-
gorithm are performed at the same time step, during the update
of the electric field coefficientsin both regions, in an absolutely
stable fashion, due to the matching of the dispersion properties
of the two schemes. Furthermore, the same principlesleadtoin-
terfaces between wavelet schemes of an arbitrary basis and the
ones that are formulated by the corresponding scaling functions
only, provided that the effective resolutions in the two regions
are kept the same. It is aso noted that the extension of the inter-
face algorithm to three dimensions is accomplished by treating
each face of Yee's cell according to the method that has been set
forthin this work.

S I11. NUMERICAL RESULTS
A. Validation

A simple two dimensional air filled square resonator (shown
in Fig. 4) is analyzed for validation purposes. The dimensions
are normalized and given in terms of equivalent FDTD grid
points. The MRTD region is only two grid points away from
the PEC walls of the resonator. A pure MRTD scheme would
model these walls by means of image theory, necessitating the
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Fig. 3. MRTD update from FDTD data.
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Fig. 4. Empty square cavity geometry, metal finned loaded cavity and mesh
(dimensions are given in FDTD grid points).

introduction of several images for a high wavelet order. How-
ever, in this study, enclosing the MRTD regioninan FDTD one,
facilitates the treatment of these hard boundaries, whose FDTD
modeling amounts to setting the tangential to PEC electric field
nodal values equal to zero. The patterns of the T'E5; and T E»»
- modes derived via the interface algorithm for MRTD schemes
With 7y ez = Tz,mee = 4 (Lby 1scalingcell) and 7, oz = 2,
T2.maz = 3 (4 by 2 scaling cells) respectively, are shown in Fig-
ures 5, 6. In both cases, atime step equal to 0.9 of the stability
limit was used. In addition, T'E>- is determined by a zero by
zero order MRTD scheme (16 by 16 scaling cells ) applied in
the MRTD region of the domain, keeping the same number of
degrees of freedom as before. The terms of the multiresolution
expansion are then plotted in Fig. 7, to verify that their wavelet
constituents assume the form of the spatial derivatives of the
field, while a coarsely resolved field pattern is represented by
scaling coefficients. Each plot is normalized with respect to the
maximum and presented in a-25 to 0 logarithmic scale.

B. Application: Metal Fin Loaded Cavity

The method of this paper istested in ametal fin loaded cavity,
similar to the one presented in [10]. This structureis chosen for
the reason that the presence of the metal fin within the domain,
restrictsthe order of the MRTD schemethat can be employed for
its analysis. In particular, whenever a scaling cell greater than
the fin dimensions is chosen, utmost care is necessary for the
compensation of the unphysical coupling of the regions below
and above the fin, caused by the scaling function defining the
fin cell (or wavelets extending beyond the fin limits). However,
the strategiesthat are followed in this case (for example domain
split), result in alocal increase of operations and consumption
of computational resources.
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Fig. 5. Electric field pattern for the T'E»; -
(4 by 4 MRTD).

mode of the empty cavity of Fig. 4
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Fig. 6. Electric field pattern for the T'E»» - mode of the empty cavity of Fig. 4
(2 by 3 MRTD).

For the interface based solution of the problem, the gridding
conditions are given in Fig. 4. In the MRTD region, a second
by second order scheme is employed (4 by 4 scaling cells). The
time step is set at 0.8 of the Courant limit and FDTD cells of
1cmby 1 cm are used. As an excitation, a Gaussian pulse,
with its 3-dB frequency chosen to be equal to f./2, f. beingthe
cut-off frequency of the T'E'1; mode of the cavity, is applied in
the FDTD region (at the plane z = 5 ¢m). Under these con-
ditions, an absolutely stable performance of the code was ob-
served. The deduced electric field spatial distribution is shown
in Fig.8. Moreover, in order to demonstrate the stability of the
solution, the electric field, sampled at the point (z = 1.55 cm,
z = 2.35 ¢m), is plotted as a function of time for an arbitrary
interval of 18,000 - 20,000 time steps, in Fig.9

C. Application : Fractional cell PML termination

Utilizing the concept of the FDTD / MRTD interface, a Per-
fectly Matched Layer (PML) termination of the MRTD domain
extending over a fraction of the MRTD scaling cell can be im-
plemented. FDTD grid points beyond the conductor that backs
the PML are simply zeroed out. Using this method, the waveg-
uide structure of Fig. 10 is solved, by a fourth order MRTD
scheme, truncated with a6 and 8 grid point PML corresponding
t0 0.1875 and 0.25 of a scaling cell, which in this case is 8 mm.
A 0- 30 GHz Gaussian pulse excitation is used, and the reflec-
tion coefficient is calculated. Fig. 11 depicts comparative plots
of the numerical results derived by the two termination types,
along with the theoretical S;; form derived by transmission line
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Fig. 7. Multiresolution constituent terms (¢ — ¢, ¢ — ¥, ¥ — ¢, 1 — ) of the
T E22 mode pattern, determined by 0 by 0 order MRTD.
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Fig. 8. Electric field distribution for the metal fin loaded cavity.

theory, demonstrating the excellent agreement of the two.

IV. CONCLUSIONS

A numerical interface between an arbitrary order Haar MRTD
and FDTD was developed and applied in this paper. The two
unique features of the proposed technique are that first, it does
not employ any interpolations or extrapolations and second, it
is applicable for any MRTD order. Hence, the developed al-
gorithm constitutes a computationally efficient tool for jointly
exploiting the advantages of FDTD and MRTD, which is criti-
cal for the acceleration of time domain schemes, when applied
to large scale problems of current microwave technology appli-
cations.
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Fig. 9. Electric field sampled within the fin loaded cavity as afunction of time
for time steps 18,000-20,000.
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Fig. 11. Numerical and theoretical S;; for the slab geometry.
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